Discrete and continuous scalar conservation laws
نویسندگان
چکیده
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract Motivated by issues arising for discrete second-order conservation laws and their continuum limits (applicable, for example, to one-dimensional nonlinear spring-mass systems), here we study the corresponding issues in the simpler setting of first-order conservation laws (applicable, for example, to the simplest theory of traffic flow). The discrete model studied here comprises of a system of first-order nonlinear differential-difference equations; its continuum limit is a one-dimensional scalar conservation law. Our focus is on issues related to discontinuities – shock waves – in the continuous theory and the corresponding regions of rapid change in the discrete model. In the discrete case, we show that a family of new conservation laws can be deduced from the basic one, while in the continuous case we show that this is true only for smooth solutions. We also examine how well the continuous model approximates rapidly changing solutions of the discrete model, and this leads us to derive an improved continuous model which is of second-order. We also consider the form and implications of the second law of thermodynamics at shock waves in the scalar case.
منابع مشابه
The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملDecay rate for perturbations of stationary discrete shocks for convex scalar conservation laws
This paper is to study the decay rate for perturbations of stationary discrete shocks for the Lax-Friedrichs scheme approximating the scalar conservation laws by means of an elementary weighted energy method. If the summation of the initial perturbation over (−∞, j) is small and decays at the algebraic rate as |j| → ∞, then the solution approaches the stationary discrete shock profiles at the c...
متن کاملDiscrete Shocks for Finite Diierence Approximations to Scalar Conservation Laws 1
Numerical simulations often provide strong evidences for the existence and stability of discrete shocks for certain nite diierence schemes approximating conservation laws. This paper presents a framework for converting such numerical observations to mathematical proofs. The framework is applicable to conservative schemes approximating stationary shocks of one dimensional scalar conservation law...
متن کاملA total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملA New Convergence Proof for Finite Volume Schemes Using the Kinetic Formulation of Conservation Laws
We give a new convergence proof for finite volume schemes approximating scalar conservation laws. The main ingredients of the proof are the kinetic formulation of scalar conservation laws, a discrete entropy inequality, and the velocity averaging technique.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010